教学中怎么渗透数学思想方法

网上有关“教学中怎么渗透数学思想方法”话题很是火热,小编也是针对教学中怎么渗透数学思想方法寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

浅谈在教学过程中如何渗透数学思想方法

我们知道:问题是数学的心脏,方法是数学的行为,思想是数学

的灵魂。不管是数学概念的建立,数学规律的发展,还是数学问题的

解决,乃至整个“数学大厦”的构建,核心问题在于数学思想方法的

渗透。

数学思想方法是解决数学问题所采用的方法。

它是从数学教材

中抽象概括出来的,是数学知识的精髓,是知识转化为能力、理论应

用于实践的桥梁。在人们的数学研究中,最有用的不仅是数学知识,

更重要的是数学思想方法。

因此如何向学生渗透数学思想方法是我们

教师上好课的关键。

下面我针对在教学过程中如何渗透数学思想方法

谈谈自己的看法。

一、在“教师的导课”中渗透数学思想方法。

在教学过程中教师为了向学生渗透学习该教学内容的必要性的

数学思想方法,经常创设与教学有关的情境。如:在教学“分数的初

步认识”时,教师首先拿出

4

个苹果平均分给

2

个同学,每人分得几

个?然后再拿出

2

个苹果平均分给

2

个同学,

每人分得几个?最后再

拿出

1

个苹果平均分给

2

个同学,每人分得几个?这时孩子会提出

1

个苹果平均分给

2

个同学每人分得“半个”。这时教师紧跟着提出怎

么表示

“半个”

呢?这样简单而易懂的情境向学生渗透了学习分数的

必要性的数学思想方法,同时还渗透了数学来源于生活。

二、在“学生的探索”中渗透数学思想方法。

如何在初中数学教学中给学生渗透数学思想

1、位置制思想:如一年级“生活中的数”数一把豆子要用到“十”、“百”等较大单位---

2、转化的思想;新知一般都是转化为已学过的知识点来探索的,这样的例子在学习中太多了.

3、算法多样化;每一种算法都是学生的一个“发明”,不同的人对不同的算法有不同的理解,只要他认为好就是好的,老师不要强加干涉,这样的例子就不举了.

4、探究思想

如何在小学数学教学中渗透转化的数学思想

所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识。所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映。数学思想是数学的灵魂,数学方法是数学的行为。运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞跃,从而上升为数学思想。若把数学知识看作一幅构思巧妙的蓝图而建筑起来的一座宏伟大厦,那么数学方法相当于建筑施工的手段,而这张蓝图就相当于数学思想。

一、了解《大纲》要求,把握教学方法

1.明确基本要求,渗透“层次”教学。《数学大纲》对初中数学中渗透的数学思想、方法划分为三个层次,即“了解”、“理解”和“会应用”。在教学中,要求学生“了解”数学思想有:数形结合的思想、分类的思想、化归的思想、类比的思想和函数的思想等。这里需要说明的是,有些数学思想在教学大纲中并没有明确提出来,比如:化归思想是渗透在学习新知识和运用新知识解决问题的过程中的,方程(组)的解法中,就贯穿了由“一般化”向“特殊化”转化的思想方法。教师在教学过程中要激发学生学习数学的好奇心和求知欲,通过独立思考,不断追求新知,发现、提出、分析并创造性地解决问题。在教学中,要认真把握好“了解”、“理解”、“会应用”这三个层次。不能随意将“了解”的层次提高到“理解”的层次,把“理解”的层次提高到“会应用”的层次,否则,学生初次接触就会感到数学思想、方法抽象难懂,高深莫测,从而导致他们失去信心。

2.从“方法”了解“思想”,用“思想”指导“方法”。在初中数学中,许多数学思想和方法是一致的,两者之间很难分割。它们既相辅相成,又相互蕴含。因此,在初中数学教学中,加强学生对数学方法的理解和应用,以达到对数学思想的了解,是使数学思想与方法得到交融的有效方法。比如化归思想,可以说是贯穿于整个初中阶段的数学,具体表现为从未知到已知的转化、一般到特殊的转化、局部与整体的转化,课本引入了许多数学方法,在教学中,通过对具体数学方法的学习,使学生逐步领略这些数学思想;同时,数学思想的指导,又深化了数学方法的运用。这样处置,使“方法”与“思想”珠联璧合,将创新思维和创新精神寓于教学之中,教学才能卓有成效。

二、渗透数学思想和方法的原则

1.循序渐进,螺旋上升的原则。

学生对学习数学、数学思想和方法的领会、掌握具有一个“从特殊到一般,从具体到抽象,从感性到理性,从低级到高级”的认识过程。学生对某一思想和方法首先是产生感性认识,经过多次反复练习,然后逐渐概括上升为理性认识,最后在对数学知识的掌握中,对形成的数学思想和方法进行验证和发展,进一步通过用数学知识解决问题从而加深理性认识。

2.坚持钻研教材,层次渗透的原则。《数学大纲》对初中数学中渗透的数学思想和方法划分为三个层次,即“了解“”理解”和“会应用”。要认真把握好“了解”“理解“”会应用”这三个层次。渗透层次数学教学思想和方法常常蕴含于教材之中,在熟悉教材、钻研教材的基础上去领悟隐含于教材字里行间的数学思想和方法。如初一“用字母表示数的变元思想”方程思想,从数到式的过渡,是由特殊到一般,由具体到抽象的飞跃。

三、在展现数学知识的形成与应用过程中,提炼数学思想方法

数学知识发生的过程也是其思想方法产生的过程。在此过程中,向学生提供丰富的、典型的、正确的直观背景材料,采取“问题情境—建立模型—解释、应用与拓展”的模式,通过对相关问题情境的研究为有效切入点,对知识发生过程的展示,使学生的思维和经验全部投入到接受问题、分析问题和感悟思想方法的挑战之中,并在此过程中领会如数感、符号感、空间观念、统计观念、应用意识和推理能力等数学思想方法。

四、有计划、有目的、有组织地上好思想方法训练课

小结课、复习课是系统知识,深化知识,使知识内化的最佳课型,也是渗透数学思想方法的最佳时机,通过对所学知识系统整理,挖掘提炼解题指导思想,归纳总结上升到思想方法的高度,掌握本质,揭示规律。初中数学中有许多体现“分类讨论”思想的知识和技能。如:(1)实数的分类;(2)按角的大小和边的关系对三角形进行分类;(3)求任意实数的绝对值分大于零、等于零、小于零三种情况讨论;(4)把两个三角形的形状、大小关系揭示得较为清楚的方法,是把两个三角形分为相似与不相似两大类;……所有这些,充分体现了分类讨论的思想方法,有利于学生认识物质世界事物之间的联系与区别。

数学思想和方法是数学问题的本质反映,追求的是“授人以渔”。在课堂教学中渗透数学思想和方法,更新数学教学观念,不仅能使学生理解问题的本质,而且可以帮助学生通过数学思想方法的迁移去认识教材以外的数学问题的本质特征,丰富学生的思维世界,使学生成为有创造能力、可持续发展的新时代人才。

一、 在教学新知识时渗透转化思想

例:在教学“异分母分数加减法”一课时,我是这样设计的。

1、在情境中产生关于异分母分数加减法的问题,引入异分母分数加减法的学习。

2、让学生独立思考,尝试计算异分母分数加法。

3、小组交流异分母分数加法的方法。整理并汇报。

方法1:将两个异分母分数都变成小数,再相加。

方法2:将两个异分母分数都通分变成同分母分数后,再相加。

4、归纳整理,渗透转化思想

思考以上两种方法,你有什么发现?(两种方法均是将异分母分数转化成已学过的知识,即将异分母分数转化成与其相等的小数或同分母分数之后,再相加。)……

5、回顾反思,强化思想

回顾本节课的学习,谈谈你的收获和体会。(在转化完成之后及时的反思,是对转化思想的进一步巩固与提升——进入思想的内核,再次深刻理解。)

在我们小学数学教材中,像这样,需教师巧妙地创设问题情境,让学生自主产生转化的需要来学习新知识的例子很多,需要我们教师深入分析教材,理解教材,进而挖掘出其蕴含的转化思想。

二、在数学公式推导过程中渗透转化思想

如平行四边形、三角形、梯形等图形的面积公式推导,它们均是在学生认识了这些图形,掌握了长方形面积的计算方法之后安排的,是整个小学阶段平面图形面积计算的一个重点,也是整个小学阶段中能较明显体现转化思想的内容之一。教学这些内容,一般是将要学习的图形转化成已经学会的图形,在引导学生比较之后得出将要学习图形的面积计算方法。随着教学的步步深入,转化思想也渐渐浸入学生们的头脑中。

如平行四边形面积推导,当教师通过创设情境使学生产生迫切要求出平行四边形面积的需要时,可以将“怎样计算平行四边形的面积”直接抛向学生,让学生独立自由地思考。这个完全陌生的问题,需学生调动所有的相关知识及经验储备,寻找可能的方法,解决问题。当学生将没有学过的平行四边形的面积计算转化成已经学过的长方形的面积的时候,要让学生明确两个方面:

一是在转化的过程,把平行四边形剪一剪、拼一拼,最后得到的长方形和原来的平行四边形的面积是相等的(等积转化)。在这个前提之下,长方形的长就是平行四边形的底,宽就是高,所以平行四边形的面积就等于底乘高。

二是在转化完成之后应提醒学生反思“为什么要转化成长方形的”。因为长方形的面积我们先前已经会计算了,所以,将不会的生疏的知识转化成了已经会了的、可以解决的知识,从而解决了新问题。在此过程中转化的思想也就随之潜入学生的心中。其他图形的教学亦是如此。需要注意的是转化应该成为学生在解决问题过程中的内在的迫切需要,而不应该是教师提出的要求,因为这样,学生的操作、思考都将处于被动的状态,对转化的理解则可能浮于表面。

三、在数学练习题中挖掘转化思想

在三角形内角和教学后,书中有一练习题,“求出四边形和正六边形的内角和是多少?”这一问题的解决完全依赖于转化思想,即:把四边形和正六边形都转化成若干个三角形的和。即连接对角线把四边形转化成两个三角形,那么四边形内角和就等于两个180度,即360度。而正六边形通过连接对角线转化成了四个三角形,则内角和是四个180度,即720度。教师在处理习题时,不能仅仅教给学生解题术,更重要的是要让学生收获其数学思想,用知识里蕴含的“魂”去塑造学生的灵魂。这是让学生受益终生的。

关于“教学中怎么渗透数学思想方法”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

(1)

猜你喜欢

发表回复

本站作者才能评论

评论列表(3条)

  • 海融丶小可爱的头像
    海融丶小可爱 2026年01月31日

    我是鲸羚号的签约作者“海融丶小可爱”

  • 海融丶小可爱
    海融丶小可爱 2026年01月31日

    本文概览:网上有关“教学中怎么渗透数学思想方法”话题很是火热,小编也是针对教学中怎么渗透数学思想方法寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您...

  • 海融丶小可爱
    用户013112 2026年01月31日

    文章不错《教学中怎么渗透数学思想方法》内容很有帮助

联系我们:

邮件:鲸羚号@gmail.com

工作时间:周一至周五,9:30-17:30,节假日休息

关注微信